Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667801

RESUMEN

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
2.
Carbohydr Polym ; 334: 121972, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553198

RESUMEN

Chronic wounds with bacterial infection present formidable clinical challenges. In this study, a versatile hydrogel dressing with antibacterial and angiogenic activity composite of silk fibroin (SF), chondroitin sulfate (CS), and graphene oxide quantum dots (GOQDs) is fabricated. GOQDs@SF/CS (GSC) hydrogel is rapidly formed through the enzyme catalytic action of horseradish peroxidase. With the incorporation of GOQDs both gelation speed and mechanical properties have been enhanced, and the photothermal characteristics of GOQDs in GSC hydrogel enabled bacterial killing through photothermal treatment (PTT) at ∼51 °C. In vitro studies show that the GSC hydrogels demonstrate excellent antibacterial performance and induce type H vessel differentiation of endothelial cells via the activated ERK1/2 signaling pathway and upregulated SLIT3 expression. In vivo results show that the hydrogel significantly promotes type H vessels formation, which is related to the collagen deposition, epithelialization and, ultimately, accelerates the regeneration of infected skin defects. Collectively, this multifunctional GSC hydrogel, with dual action of antibacterial efficacy and angiogenesis promotion, emerges as an innovative skin dressing with the potential for advancing in infected wound healing.


Asunto(s)
Fibroínas , Grafito , Puntos Cuánticos , Fibroínas/farmacología , Sulfatos de Condroitina/farmacología , Hidrogeles/farmacología , Células Endoteliales , Cicatrización de Heridas , Antibacterianos/farmacología
3.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525920

RESUMEN

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Asunto(s)
Calcinosis , Prótesis Valvulares Cardíacas , Humanos , Animales , Bovinos , Anciano , Sulfatos de Condroitina/farmacología , Reactivos de Enlaces Cruzados/farmacología , Válvulas Cardíacas , Glutaral , Antiinflamatorios/farmacología , Pericardio
4.
J Food Sci ; 89(3): 1791-1803, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38317402

RESUMEN

Bone broth has recently gained worldwide recognition as a superfood that supplements several nutrients lacking in modern human diets; however, little is known of its efficacy on osteoporosis. Therefore, we aimed to identify the components of chicken-vegetable bone broth (CVBB) that are associated with osteoporosis prevention and verified the efficacy of these components using in vivo studies. In biochemical and cell biological experiments, CVBB was fractionated using ion exchange chromatography (IEC), and the effect of each IEC fraction on osteoclast differentiation was evaluated based on tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and quantitative polymerase chain reaction analysis using mouse macrophage-like cells (RAW264 cell). In animal experiments, an ovariectomized (OVX) rat model was generated, followed by whole bone broth (OVX/CVBB) or IEC fraction (OVX/CVBB-Ext) administration and bone structural parameter characterization of OVX rat tibia based on micro-CT. Four CVBB fractions were obtained using IEC, and the fraction containing both hyaluronan and chondroitin sulfate (CVBB-Ext) led to the maximum inhibition of RAW264 cell differentiation. CVBB-Ext downregulated the expression of osteoclast differentiation marker genes. In animal experiments, the OVX group showed a clear decrease in bone density compared to that in the Sham operation group. The OVX/CVBB and OVX/CVBB-Ext groups showed increased bone mineral density and bone volume/tissue volume values compared to those in the OVX/control group. These results suggested that CVBB and CVBB-Ext slowed osteoporosis progression. Therefore, we conclude that hyaluronan and chondroitin sulfate in CVBB are key substances that impede osteoporosis progression. PRACTICAL APPLICATION: This study provides practical information on the effects of bone broth ingredients on osteoporosis to expand the current knowledge on the efficacy of bone broth, which is a widely consumed food. These results may help in the future development of bone broth as a dietary supplement for managing osteoporosis.


Asunto(s)
Osteoporosis , Verduras , Ratones , Humanos , Ratas , Animales , Sulfatos de Condroitina/farmacología , Ácido Hialurónico/farmacología , Pollos , Osteoporosis/metabolismo , Densidad Ósea
5.
Int J Biol Macromol ; 262(Pt 1): 129969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325688

RESUMEN

Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.


Asunto(s)
Sulfatos de Condroitina , Dermatán Sulfato , Animales , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Dermatán Sulfato/química , Alimentos Funcionales , Glicosaminoglicanos/química
6.
Signal Transduct Target Ther ; 9(1): 39, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355690

RESUMEN

Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.


Asunto(s)
COVID-19 , N-Acetilgalactosamina-4-Sulfatasa , Ratones , Animales , Humanos , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Glicoproteína de la Espiga del Coronavirus , Carbohidrato Sulfotransferasas , Enzima Convertidora de Angiotensina 2 , Proteínas Quinasas p38 Activadas por Mitógenos/genética , SARS-CoV-2/metabolismo
7.
Int J Biol Macromol ; 262(Pt 1): 129671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423906

RESUMEN

Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.


Asunto(s)
Sulfatos de Condroitina , Neoplasias , Animales , Ratones , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Apoptosis , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Línea Celular Tumoral
8.
Int J Biol Macromol ; 261(Pt 1): 129734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281530

RESUMEN

The complete healing of wounds remains a challenge in clinical care. In addition, various complications such as inflammation and infection that may occur during skin wound healing can impede the healing process. Here, we constructed a multifunctional self-repairing hydrogel by utilizing Schiff base bonds. This hydrogel exhibited good self-healing properties and could cope with destructive external influences. The self-healing hydrogel was injectable, ensuring that the hydrogel dressing adhered to the wound. Carboxymethyl chitosan and oxidized chondroitin sulfate demonstrated good biocompatibility and multiple bioactivities and were successfully used to prepare self-healing hydrogels. Meanwhile, the SIKVAV biopeptide was less expensive and more morphologically stable than vascular endothelial growth factor and had a high pro-angiogenic activity. Thus, the SIKVAV biopeptide was cross-linked to the oxidized chondroitin sulfate of the hydrogel through covalent bonding to avoid rapid biopeptide degradation, achieving a slow release of the drug. This peptide hydrogel exhibited good biocompatibility and antimicrobial properties; moreover, experiments conducted on mice revealed that it could effectively promote angiogenesis and skin tissue repair. These findings suggest that the injectable self-repairing peptide hydrogel may facilitate skin wound healing and other applications.


Asunto(s)
Quitosano , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/química , Cicatrización de Heridas , Factor A de Crecimiento Endotelial Vascular/farmacología , Sulfatos de Condroitina/farmacología , Quitosano/farmacología , Quitosano/química , Vendajes , Antibacterianos/farmacología
9.
Int J Biol Macromol ; 262(Pt 1): 129846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296150

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder influenced by various factors, including age, genetics, and the environment. Current treatments provide symptomatic relief without impeding disease progression. Previous studies have demonstrated the therapeutic potential of exogenous heparin and chondroitin sulfate in PD. However, their therapeutic mechanisms and structure-activity relationships remain poorly understood. In this study, low-molecular-weight heparin (L-HP) and chondroitin sulfate (L-CS) exhibited favorable therapeutic effects in a mouse model of PD. Proteomics revealed that L-HP attenuated mitochondrial dysfunction through its antioxidant properties, whereas L-CS suppressed neuroinflammation by inhibiting platelet activation. Two glycosaminoglycan (GAG)-binding proteins, manganese superoxide dismutase (MnSOD2) and fibrinogen beta chain (FGB), were identified as potential targets of L-HP and L-CS, and we investigated their structure-activity relationships. The IdoA2S-GlcNS6S/GlcNAc6S unit in HP bound to SOD2, whereas the GlcA-GalNAc4S and GlcA-GalNAc4S6S units in CS preferred FGB. Furthermore, N-S and 2-O-S in L-HP, and 4-O-S, 6-O-S, and -COOH in L-CS contributed significantly to the binding process. These findings provide new insights and evidence for the development and use of glycosaminoglycan-based therapeutics for PD.


Asunto(s)
Sulfatos de Condroitina , Enfermedad de Parkinson , Animales , Ratones , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/uso terapéutico , Sulfatos de Condroitina/química , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Glicosaminoglicanos/farmacología , Glicosaminoglicanos/química , Heparina
10.
Carbohydr Polym ; 328: 121722, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220325

RESUMEN

This study aimed to investigate the alleviative effects of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus (fCSSc) on the intestinal barrier injury and oxidative stress damage in vitro and in vivo. The results showed that fCS-Sc protected the intestinal barrier and improved the antioxidant function in H2O2 damaged Caco-2 cells via up-regulating the tight junction proteins and activating Keap1-Nrf2-ARE antioxidant pathway. Furthermore, administration fCS-Sc could ameliorate the weight loss and spleen index decrease in Cyclophosphamide (Cy) treated mice, improve the expressions of ZO-1, Claudin-1, Nrf2, SOD, and NQO-1 in Cy damaged colon tissue, showing significant protective effects against intestinal barrier damage and oxidative stress in vivo. fCS-Sc intervention also alleviated the gut microbiota disorder though increasing the richness and diversity of intestinal bacteria, regulating the structural composition of gut microbiota. fCS-Sc promoted the relative abundance of beneficial microbiota and inhibited the growth of harmful bacteria. This study provided a theoretical basis for the application of fCS-Sc as a prebiotic in chemotherapy.


Asunto(s)
Pepinos de Mar , Stichopus , Humanos , Animales , Ratones , Stichopus/química , Pepinos de Mar/química , Proteína 1 Asociada A ECH Tipo Kelch , Antioxidantes , Células CACO-2 , Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Estrés Oxidativo
11.
Curr Opin Urol ; 34(2): 44-51, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962190

RESUMEN

PURPOSE OF REVIEW: This study aims to further understand the physiological mechanism of chondroitin sulfate treatment on the urinary bladder in cases of inflammation, by investigating the effect of chondroitin sulfate therapy on recovery of urothelial barrier in an in-vitro chronic injury model. RECENT FINDINGS: With inflammatory bladder conditions, the urothelial barrier seems decreased. Glycosaminoglycan (GAG) replacement therapy is supposed to help restore this barrier. Clinical studies on inflammatory bladder conditions are complicated because of the heterogeneous patient population, hence the need for preclinical models. SUMMARY: In a model using porcine urothelial cells, functional barrier (TEER) and barrier markers were assessed. Chronic urothelial damage was simulated through protamine sulfate instillations with and without subsequent chondroitin sulfate instillations during 3 days. Chondroitin sulfate instillations significantly improved TEER compared to protamine sulfate treatment only (TEER difference 310 Ω.cm 2 , P  < 0.001). This consistent effect over 3 days resulted in a significant higher mean TEER value in the chondroitin sulfate treated group (difference 1855 Ω.cm 2 , P  < 0.001). Enhanced recovery of chondroitin sulfate and other barrier markers was observed.Chondroitin sulfate therapy shows promise in facilitating the recovery of the urothelial barrier in cases of chronic damage. This preclinical study lends support to the use of clinical GAG replenishment therapy for patients with a chronically impaired urothelium.


Asunto(s)
Sulfatos de Condroitina , Enfermedades de la Vejiga Urinaria , Animales , Sulfatos de Condroitina/farmacología , Protaminas/toxicidad , Porcinos , Urotelio
12.
Int J Biol Macromol ; 258(Pt 1): 128839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134998

RESUMEN

In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.


Asunto(s)
Cisplatino , Riñón , Polietilenglicoles , Polietileneimina , Ratas , Masculino , Animales , Cisplatino/farmacología , Sulfatos de Condroitina/farmacología , Nanogeles , Ratas Sprague-Dawley , Antioxidantes/farmacología , Doxorrubicina/farmacología , Estrés Oxidativo , Creatinina/metabolismo
13.
Acta Biomater ; 174: 116-126, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101556

RESUMEN

Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. This study focuses on the GAG molecules chondroitin sulfate (CS), dermatan sulfate (DS), and hyaluronic acid (HA). CS and DS are stereoisomers while HA is the only non-sulfated GAG. We characterized and decoupled the effects of these GAG molecules on the stiffness, transport, and matrix microarchitecture properties of type I collagen hydrogels using mechanical indentation testing, microfluidics, and confocal reflectance imaging, respectively. We complement these biophysical measurements with turbidity assays to profile collagen aggregate formation. Surprisingly, only HA enhanced the ECM indentation modulus, while all three GAGs had no effect on hydraulic permeability. Strikingly, we show that CS, DS, and HA differentially regulate the matrix microarchitecture of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs define key physical properties of the ECM, this work shows new ways in which stiffness measurements, microfluidics, microscopy, and turbidity kinetics can be used complementarily to reveal details of collagen self-assembly and structure. STATEMENT OF SIGNIFICANCE: Collagen and glycosaminoglycans (GAGs) are integral to the structure, function, and bioactivity of the extracellular matrix (ECM). Despite widespread interest in collagen-GAG composite hydrogels, there is a lack of quantitative understanding of how different GAGs alter the biophysical properties of the ECM across tissue, cellular, and subcellular length scales. Here we show using mechanical, microfluidic, microscopy, and analytical methods and measurements that the GAG molecules chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially regulate the mechanical, transport, and microstructural properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. As such, these results will inform improved design and utilization of collagen-based scaffolds of tailored composition, mechanical properties, molecular availability due to mass transport, and microarchitecture.


Asunto(s)
Sulfatos de Condroitina , Ácido Hialurónico , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Ácido Hialurónico/farmacología , Dermatán Sulfato/farmacología , Dermatán Sulfato/química , Dermatán Sulfato/ultraestructura , Hidrogeles/farmacología , Glicosaminoglicanos , Colágeno , Matriz Extracelular
14.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 8-14, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37807340

RESUMEN

Cancer has the second-highest mortality rate worldwide after cardiovascular disease. In addition, breast and cervical cancer are two of the leading causes of cancer-related deaths among women. The tumor microenvironment, which consists of fibroblasts, immune cells, cells that form blood vessels, and proteins, is a therapeutic target for cancer therapy. As part of the cellular microenvironment, glycosaminoglycan chondroitin sulfate is associated with various aspects of tumor progression and metastasis depending on the sulfate pattern of chondroitin sulfate. This study evaluated the roles of Microbial Chondroitin Sulfate (CS) and Commercial CS in tumor growth and metastasis comparatively using MDA-MB-231 metastatic breast cancer cells, HeLa cervical cancer cells, and normal fibroblasts. In addition, the role of CS types in wound healing was also assessed comparatively.  Microbial CS was more cytotoxic in MDA-MB-231 cells than HeLa compared to Commercial CS. Although both CS reduced cell viability in normal cells, the selective index of Microbial CS in MDA-MB-213 cells was higher than its commercial counterpart. In addition, the role of CS types in wound healing was also assessed comparatively. Both types of CS decreased the cell migration in MDA-MB-231 cancer cells, but HeLa cells were more sensitive to Microbial CS than Commercial CS to heal the wound. The wound healing of NIH3T3 cells after Microbial CS was similarly high to the healing after Commercial CS. This preliminary study shows that microbial CS produced by biotechnological methods from a recombinant source created by our team can be an effective therapeutic agent in various types of cancer.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Ratones , Animales , Femenino , Humanos , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/uso terapéutico , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Células 3T3 NIH , Cicatrización de Heridas , Microambiente Tumoral
15.
Int J Biol Macromol ; 253(Pt 5): 127080, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802438

RESUMEN

Medical devices are essential for patient care, but they can also serve as havens for dangerous microbes and the development of biofilm, which can lead to serious infections and higher death rates. To meet these issues, it is crucial to develop novel and effective antimicrobial coatings for medical devices. In this context, we have developed a new biofunctionalized nanosilver (ICS-Ag), employing itaconyl-chondroitin sulfate nanogel (ICSNG) as a synergistic reducing and stabilizing agent, to effectively eradicate microbial infections and biofilm formation. The antibacterial investigations showed that ICS-Ag nanocomposite is an intriguing antibiotic with excellent antibacterial indices (MIC/MBC (µg/mL): 2.29/4.58, 1.25/2.50, and 1.36/1.36 against S. aureus, E. coli, and P. aeruginosa, respectively), as well as antifungal capacity. Furthermore, ICS-Ag demonstrated efficacy superior to that of the antibiotic (ciprofloxacin, Cipro) against both Gram-positive and Gram-negative bacterial biofilms. TEM images of untreated and treated bacterial strains demonstrate synergistic actions that harm the bacterial cytomembrane, leading to the release of intracellular contents and bacterial death. Interestingly, ICS-Ag shows excellent biocompatibility, with an IC50 value (71.25 µg/mL) higher than MICs against tested microbes. Overall, the ICS-Ag film may provide multifunctional antimicrobial coatings for medical equipment to reduce microbial contamination and biofilm development.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Humanos , Plata/farmacología , Sulfatos de Condroitina/farmacología , Nanogeles , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Ciprofloxacina , Biopelículas , Pruebas de Sensibilidad Microbiana
16.
Carbohydr Polym ; 321: 121304, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739534

RESUMEN

Fucosylated chondroitin sulfate (FCS) extracted from Phyllophorella kohkutiensis (PkFCS) is composed of d-GalNAc, d-GlcA, l-Fuc and -SO42-. According to the defined structures revealed by NMR spectra of the branches released by mild acid hydrolysis and oligosaccharides generated by ß-eliminative depolymerization, the backbone of PkFCS is CS-E, and the branch types attached to C-3 of d-GlcA include l-Fuc2S4S, l-Fuc3S4S, l-Fuc4S, and the disaccharide α-d-GalNAc-1,2-α-l-Fuc3S4S with the ratio of 43:13:22:22. Notably, novel heptasaccharide and hendecasaccharide were identified that are branched with continuous distribution of the disaccharide. The structural sequences of the oligosaccharides indicate that three unique structural motifs are present in the entire PkFCS polymer, including a motif branched with randomly distributed different sulfated l-Fuc units, a motif containing regular l-Fuc2S4S branches and a motif enriched in α-d-GalNAc-1,2-α-l-Fuc3S4S. This is the first report about the distribution pattern of diverse branches in natural FCS. Natural PkFCS exhibited potent anticoagulant activity on APTT prolonging and anti-iXase activity. Regarding the structurally defined oligosaccharides with sulfated fucosyl side chains, octasaccharide (Pk4b) is the minimum fragment responsible for its anticoagulant activity correlated with anti-iXase. However, further glycosyl modification with a non-sulfated d-GalNAc at the C-2 position of l-Fuc3S4S could significantly decrease the anticoagulant and anti-iXase activity.


Asunto(s)
Pepinos de Mar , Animales , Anticoagulantes/farmacología , Sulfatos de Condroitina/farmacología , Disacáridos , Sulfatos , Óxidos de Azufre
17.
Carbohydr Polym ; 320: 121255, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659829

RESUMEN

Neovascularization is crucial to the occurrence and progression of tumors, and the development of antiangiogenic drugs has essential theoretical value and clinical significance. However, antiangiogenesis therapy alone cannot meet the needs of tumor therapy. Meanwhile, polysaccharides are ideal drug carriers with promising applications in drug modification and delivery. In this research, we developed a novel redox and acid sensitive nanodrug (CDDP-CS-Cys-EA, CCEA) composed of chondroitin sulfate (CS), antiangiogenic peptide (endostatin2-alft1, EA) and chemotherapeutic drug (cisplatin, CDDP). CCEA exhibited redox and acid responsiveness, better blood hemocompatibility (hemolysis rate < 5 %), the ability to target tumors (CD44-mediated endocytosis), and strong antiangiogenesis and antitumor characteristics in vitro. Moreover, CCEA showed excellent antitumor activity and low toxicity in B16 xenograft mice. It also has been confirmed that CCEA induced tumor cell apoptosis through promoting the expression of Bax, suppressing the expression of Bcl-2, decreasing mitochondrial membrane potential, releasing cytochrome C (Cyto C), and enhancing the activities of Caspase 9 and Caspase 3. The results of this paper provided a theoretical basis and insight for the development of antitumor drugs.


Asunto(s)
Melanoma , Nanopartículas , Humanos , Animales , Ratones , Sulfatos de Condroitina/farmacología , Melanoma/tratamiento farmacológico , Inmunoterapia , Apoptosis , Cisplatino , Nanopartículas/uso terapéutico , Receptores de Hialuranos
18.
Adv Biol (Weinh) ; 7(12): e2300249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635149

RESUMEN

Cartilage injury is a common disease in daily life. Especially in aging populations, the incidence of osteoarthritis is increasing. However, due to the poor regeneration ability of cartilage, most cartilage injuries cannot be effectively repaired. Even cartilage tissue engineering still faces many problems such as complex composition and poor integration of scaffolds and host tissues. In this study, chondroitin sulfate, one of the main components of extracellular matrix (ECM), is chosen as the main natural component of the material, which can protect cartilage in a variety of ways. Moreover, the results show that the addition of chondroitin sulfate improves the mechanical properties of gelatin methacrylate (GelMA) hydrogel, making it able to effectively bear mechanical loads in vivo. Further, chondroitin sulfate is modified to obtain the oxidized chondroitin sulfate (OCS) containing aldehyde groups via sodium periodate. This special group improves the interface integration and adhesion ability of the hydrogel to host cartilage tissue through schiff base reactions. In summary, GelMA/OCS hydrogel is a promising candidate for cartilage regeneration with good biocompatibility, mechanical properties, tissue integration ability, and excellent cartilage repair ability.


Asunto(s)
Enfermedades de los Cartílagos , Hidrogeles , Animales , Ratas , Hidrogeles/farmacología , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/uso terapéutico , Gelatina/farmacología , Cartílago , Regeneración
19.
Poult Sci ; 102(10): 102916, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499613

RESUMEN

This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.


Asunto(s)
Cartílago Articular , Glicosaminoglicanos , Animales , Glicosaminoglicanos/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/farmacología , Pollos , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/farmacología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Glucosamina/metabolismo , Glucosamina/farmacología , Minerales/metabolismo , Sulfatos/metabolismo
20.
Int J Biol Macromol ; 248: 125739, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423445

RESUMEN

Wound regeneration with complete functions and skin appendages is still challenging in wound dressing application. Inspired by the efficient wound healing in the fetal environment, we developed a fetal milieu-mimicking hydrogel for accelerating wound healing simultaneously with hair follicle regeneration. To mimic the fetal extracellular matrix (ECM), which contains high content of glycosaminoglycans, hyaluronic acid (HA) and chondroitin sulfate (CS) were selected to fabricate hydrogels. Meanwhile, dopamine (DA) modification endowed hydrogels with satisfactory mechanical properties and multi-functions. The hydrogel encapsulated atorvastatin (ATV) and zinc citrate (ZnCit), namely HA-DA-CS/Zn-ATV, exhibited tissue adhesion, self-healing capacity, good biocompatibility, excellent anti-oxidant ability, high exudate absorption, and hemostasis property. In vitro results revealed that hydrogels exerted significant angiogenesis and hair follicle regeneration efficacy. In vivo results confirmed that hydrogels significantly promoted wound healing, and the closure ratio reached over 94 % after 14 days of hydrogels-treatment. The regenerated skin exhibited a complete epidermis, dense and ordered collagen. Furthermore, the number of neovessels and hair follicles in the HA-DA-CS/Zn-ATV group were 1.57- and 3.05-fold higher than those of the HA-DA-CS group. Thus, HA-DA-CS/Zn-ATV serves as multifunctional hydrogels for simulating the fetal milieu and achieving efficient skin reconstruction with hair follicle regrowth, exhibiting potential in clinical wound healing.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Hidrogeles/farmacología , Ácido Hialurónico/farmacología , Sulfatos de Condroitina/farmacología , Dopamina/farmacología , Cicatrización de Heridas , Folículo Piloso , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...